f(x)=x+3x
Taylorpolynom 2. Ordnung §
f(x)=x+3xf′(x)=(x+3)23f′′(x)=−(x+3)36
T2(f,1,x)=========k=0∑2k!f(k)(1)(x−1)k0+30(x−1)0+(1+3)23(x−1)1+2!1⋅(2+3)46⋅2+18(x−1)20+163⋅(x−1)+1253(x−1)2163x−163+1253(x2−2x+1)163x−163+1253x2−1256x+125320001(3⋅125x−3⋅125+3⋅16x2−6⋅16x+3⋅16)20001(375x−375+48x2−96x+48)20001(48x2+279x−327)0.024x2+0.1395x−0.1635
f(1), nicht f(k).
T2(f,1,x)=k=0∑2k!f(k)(1)(x−1)k=1+31(x−1)0+(1+3)23(x−1)1+2!1⋅(1+3)46+18(x−1)2=41+163(x−1)+16⋅8⋅224(x−1)2=41+163x−163+321(x2−2x+1)=321x2+163x−161x+41−163+321=321(x2+(3⋅2)x−(1⋅2)x+(1⋅8)−(3⋅2)+1)=321(x2+4x+3)=321x2+81x+323
f′′(x)=(x+3)46x+18. f′′(x) ist negativ.
T2(f,1,x)=41+163x−163−21⋅436⋅(x−1)2=163x+161−643⋅(x2−2x+1)=−643x2+163x+323x+161−643=−643x2+329x+641
- Richtige Zahlen einsetzen
- Minus nicht vergessen