(a−b)2=a2−2ab+b2(1)
n→∞limba=limn→∞blimn→∞a(2)
an≤bn≤cn∧n→∞liman=n→∞limcn⟹n→∞limbn=n→∞liman(3)
(a+b)⋅(a−b)=a2−b2(4)
(a+b)n=k=0∑n(kn)an−kbk(5)
(kn)=k!⋅(n−k)!n!(6)
k=k0∑nf(k)=f(k0)+k=k0+1∑nf(k)(7)
(1−(1−x))=1−1+x=x(8)
n→∞liman±bn=a±b(9)