k=0∑∞(k!)k(2k)!⋅(x+2)k=k=0∑∞ak(k!)k(2k)!⋅(x−x0(−2))k
Bearbeitung §
an=(n!)n(2n)!
Quotientenmethode §
q=n→∞limanan+1=n→∞lim(n!)n(2n)!((n+1)!)n+1(2n+2)!=n→∞lim((n+1)!)n+1(2n+2)!⋅(2n)!(n!)n=n→∞lim((n+1)!)n+1(2n+2)!⋅(2n)!(n!)n=n→∞lim(n!)n+1⋅(n+1)n+1(2n)!⋅(2n+1)⋅(2n+2)⋅(2n)!(n!)n=n→∞lim(n!)n+1⋅(n+1)n+1⋅(2n)!(2n)!⋅(2n+1)⋅(2n+2)⋅(n!)n=n→∞lim(n!)⋅(n+1)n+1(2n+1)⋅(2n+2)=n→∞lim(n!)⋅(n+1)n+1(2n+1)⋅2⋅(n+1)=n→∞lim(n!)⋅(n+1)n(2n+1)⋅2=n→∞lim(n!)⋅(n+1)n4⋅(n+21)≤n→∞lim(n!)⋅(n+1)n4⋅(n+1)=n→∞lim(n!)⋅(n+1)n−14=0
⟹r=q1=01=∞
…=L’Hn→∞lim((n+1)n−1)′(4n+2)′=n→∞lim(n−1)⋅(n+1)n−2⋅14=n→∞lim(n−1)⋅(n+1)⋅(n+1)n−34=n→∞lim(n2−1)⋅(n+1)n−34=0