Behauptung

Beweis

IA ()

IS ()

\begin{alignat*}{3} &\quad&a_{n+1} &> \sqrt{x_0} &\quad& \\ \stackrel{\text{Def.}}{\iff} && \frac{1}{2} \Big( a_n+\frac{x_0}{a_n} \Big) &> \sqrt{x_0} \\ \iff && \frac{1}{2} \Big( a_n+\frac{x_0}{a_n} \Big) &> \underbrace{ \sqrt{ a_n \cdot \frac{x_0}{a_n} } }_{=\sqrt{x_0}} \\ \stackrel{\text{1.9}}{\impliedby} &\quad \rlap{ \frac{1}{2}(a+b) \ge \sqrt{ab} \quad \wedge \quad \text{LS} \neq \text{RS, da } a_n \neq \frac{x_0}{a_n} \text{, da } } \\ &\quad \rlap{ a_n = \frac{x_0}{a_n} \iff a_n^2 = x_0 \iff a_n = \sqrt{x_0} \ \unicode{x21af} \ \text{(IV)} \ \blacksquare } \end{alignat*}

Latex align testing

split

multiline

\begin{multline} a = b + c + d + e + f + g + h + i + b + c + d + e + f + g + h + i \\ + b + c + d + e + f + g + h + i + b + c + d + e + f + g + h + i \end{multline}
\begin{multline} a = a + b \\ \shoveleft{b = c} \\ \shoveright{c = d} \\ d = e \end{multline}

gather & split

align

alignat

flalign

\begin{flalign} x&=y & X&=Y\\ x’&=y’ & X’&=Y’\\ x+x’&=y+y’ & X+X’&=Y+Y’ \end{flalign}

examples

Further Reading