Ableitung §
dxdf3=(1+cos(x))2dxd(sin(x))⋅(1+cos(x))−(sin(x))⋅dxd(1+cos(x))=(1+cos(x))2(cos(x)⋅(x)′)⋅(1+cos(x))−(sin(x))⋅(−sin(x)⋅(x)′)=(1+cos(x))2(cos(x)⋅2x1)⋅(1+cos(x))−(sin(x))⋅(−sin(x)⋅2x1)=(1+cos(x))22x(cos(x))(1+cos(x))+2xsin2(x)=2x⋅(1+cos(x))2cos(x)+cos2(x)+sin2(x)=1=2x⋅(1+cos(x))2cos(x)+1=2x⋅(1+cos(x))1
cos2(x)+sin2(x)=1